

GNSS RTK Hybrid Supreme K100 MAX

SPECIFICATION (SOFTWARE)

SOFTWARE
GNSS Fieldwork
Fieldwork Partner

- K-survey
- smartphone recommended (instead of regular data logger)

SOFTWARE

fieldwork software
K-survey

newly added merged
applications

mixed solution
point library

realtime laser
point cloud

APPLICATIONS

Stockpile Volume
Calculation

Piping Engineering
Layout

Pipeline Network
Investigation

Rural Drainage
Pipeline
Renovation

House Corner Point
Measurement

Flyover As-built
Survey

Urban Street
Renovation

Bridge Pier
Measurement

Bank Position &
Water Level
Measurement

Slope Profile
Survey

Old Building
Renovation

The GNSS + SLAM Mixed&Match Combo tends to help this device tackle some tough cases in which conventional RTK survey suffers satellite signal loss and total station measurements come up with low efficiency. With K100 MAX, it's possible to witness a few changes.

SPECIFICATION (TECHNICAL)

TECHNICAL
GNSS Feature

full constellation tracking and smart dynamic sensitivity positioning technology, supports all existing and under-planning satellites, reliable carrier tracking capability and quality observational data, adapts to various environments, complex terrains, and long-range challenges

GNSS Performance

Signal Tracking
Multi-constellation

- 1698 channels
- GPS: L1C/A, L2P, L2C, L5, L1C*
- GLONASS: G1, G2, G3*
- BDS-2: B1I, B2I, B3I
- BDS-3: B1I, B3I, B1C, B2a, B2b-PPP
- GALILEO: E1, E5b, E5a, E6*
- QZSS: L1C/A, L1C, L2C, L5
- NavC/I/RNSS: L5
- SBAS: EGNOS L1, L5*

IMU Performance (SLAM)

- Gyro Offset Stability TC
- Gyro Sensitivity/
- Temperature
- Accelerator Offset
- Stability TC
- Accelerator Sensitivity/
- Temperature
- Gyro + Accel Combo
- Current
- Extended Accel
- Full-scale Range
- Improved ODR Latency

SLAM Performance

Scanning Range

• 0.1-70m (70m@ 80% reflectivity; 40m@ 10% reflectivity)

• 200,000 pts/sec

• 10Hz

• 360° x 59°

• 905 nm

• CLAS 1 (IEC 60825-1:2014), eye-safe

• available when RTK is enabled outdoors

• available

• available

• ≤10 mm

• approx. 5-20 mm (optimized)

• best up to 3-5 cm (powered by onboard RTK positioning)

• best up to 2-4 cm (post processed)

• best up to 3 cm, typical 5-10 cm, known as MagiCalc by means of Mixed Solution

• ≤5 cm @15 m)

• optimal: H. 8 mm + 1 ppm RMS; V. 15 mm + 1 ppm RMS; typical: H. 10 mm + 1 ppm RMS; V. 20 mm + 1 ppm RMS

• automatically calibrates coordinates according to tilt direction and tilting angle

• 0°~60°

• RMS RTK+0.7mm/°tilt angle (in case of 1.8m carbon fiber pole)

• 0.005° RMS pitch/roll, 0.01° RMS heading

• 0.01 m RMS pitch/roll, 0.02 m RMS heading

IMU Performance (GNSS)

Calibration-free

Tilting Range

Tilt Compensating

Accuracy

Attitude Accuracy

(post processed)

Positioning Accuracy

(post processed)

AR Stake-out Performance

Mode

Visual Stake-out Accuracy

Note: all specifications are subject to change without any prior notice.

1. The accuracy performance and reliability might vary due to different factors such as signal obstruction, tilting angle, observation time, multipath model validation, optimal GNSS geometry and atmospheric conditions, etc.
2. The battery endurance might result from the operating environment, operating temperature, and battery life.

KOLIDA
Professional's Choice

(V. 202504)

Why K100 MAX?

Literally, DotLas is a highly integrated device capable of point (= dot) measurement and laser scanning. That's how this new compound word DotLas came. And Plus here actually refers to something extra, merged applications. By combining the immense power from the existing 2 core technologies in geo-spatial society, it features amazing versatility, and intends to challenge some complex environments where conventional GNSS RTK cannot satisfy. Therefore, it resets the benchmark of GNSS RTK hybrid models and tops itself as the supreme masterpiece in the industry.

SPECIFICATION (GENERAL & PHYSICAL)

GENERAL	M
Model Series	
Functionality	

PHYSICAL	M
Dimension	
Net Weight	

Camera (for SLAM)	M
-------------------	---

Camera (for GNSS)	M
-------------------	---

Laser Scanner	M
---------------	---

Data Download	M
---------------	---

LEMO Interfacing	M
------------------	---

SPECIFICATION (ELECTRICAL & ENVIRONMENTAL)

ELECTRICAL

Power Supply	• battery handgrip unit, model: iGrip, 50 Wh, 3500 mAh
Endurance	• >2 hours
Power Consumption	• 26 W

Charging

Input Voltage	• charging time 2 hours, type-C recharge, max. current 3 A
Power Output	• nominal 14.4 V
	• charging 30 W max. current 5 A max.

ENVIRONMENTAL

Working Temperature	• -20 ~ 50 °C
Storage Temperature	• -20 ~ 60 °C

Operating Humidity

Ingress Protection	• 80% non-condensing
	• IP64 rating according to IEC 60529

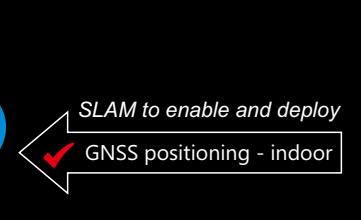
Why 1+1 > 2 Is True?

Magicalc = Magic + calculation (Positioning while Satellites Unlocked)
With K100 MAX it's possible to obtain coordinate information in the way of Mixed Solution in GNSS-unfriendly or even GNSS-denied areas. The SLAM trajectory will help to reverse compute the positional result and continue point measurements when satellites are unlocked. The Magicalc accuracy mainly depends on the unlocked duration, SLAM trajectory distance, and texture details of the new environment.

AirMeas = Air Measurement (Contactless Measurement)

Have you heard about iPhone AirDrop? AirMeas is somewhat similar to this principle or saying. For some inaccessible zones, K100 MAX may help to measure in the way of SLAM data capture within scanning range. Just imagine how to measure the center of the manhole cover on the ground, center of a router device installed overhead, etc. Go to the point in pano image overlaid with colorized point cloud, and you will obtain the coordinate automatically instead of reaching there physically.

Super Stake-out


On the market, AR stake-out has been applied to more and more RTK receiver models. Generally speaking, AR stake-out goes with visual aided methodology. While AirMeas is to measure the unknown point that is inaccessible, Super Stake-out helps to reach the known point in the way of pano image overlaid with colorized point cloud, which is a powerful reverse application of AirMeas.

About Fixed Solution & Mixed Solution

Fixed Solution means that the GNSS RTK rover and its allocated base station can simultaneously track at least five satellites in common, and then the rover keeps receiving differential corrections from the base station, which is already widely acknowledged in the geospatial community.

Mixed Solution refers to a reverse computed result scientifically derived from the time synchronization of SLAM trajectory and earlier positional records, which well interprets the Mix&Match Combo. By unlocking the combined power of GNSS+SLAM, it sets out **A Brand New Concept to the Industry** indeed.

SPECIFICATION (COMMUNICATION & DATA MANAGEMENT)

COMMUNICATION

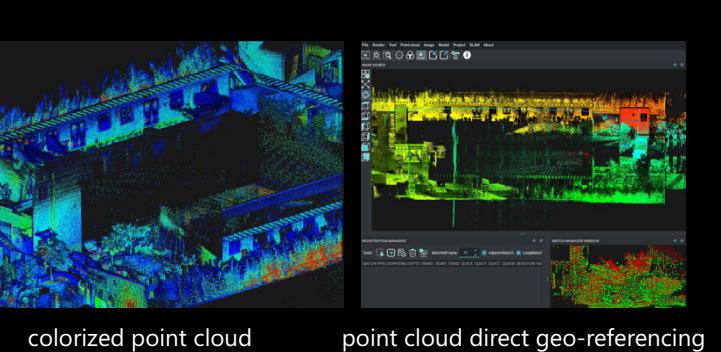
Screen Operation	• touch operation, for mode setting and status display
Wi-Fi Datalink	• device may access to Wi-Fi for transmit and receive differential corrections

Voice Language	• supports Chinese, English, Korean, Russian, Portuguese, Spanish, Turkish as default
Radio Datalink	• RX radio module built in, working frequency 410-470 MHz, protocol Farlink, SOUTH, TrimTalk450S, ZHD, HUACE

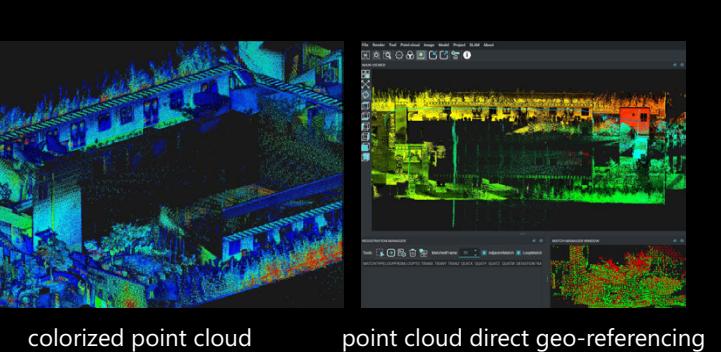
Web Interaction	• Web UI management platform built in, accessible to device for real-time monitoring device status and device configuration via Wi-Fi and USB
Bluetooth	• automatic Bluetooth pairing between device and controller by touch (NFC module on board)

BT4.2 (BR/EDR+BLE) standard	• is needed for controller side)
Automatic Bluetooth pairing between device and controller by touch (NFC module on board)	• 802.11b/g/n standard

Audio Messaging	• iVoice smart audio technology on board, for smart status broadcasting and voice instructions
NFC Wireless	• NFC module on board


WLAN	• 802.11b/g/n standard
------	------------------------

DATA MANAGEMENT


Data Transfer	• USB, FTP, and HTTP
Data Storage	• SSD 4 GB (for GNSS) and 512 GB (for SLAM) built in, extendable to 1 TB max.

Data Format	• Static: South STH, Rinex2, Rinex3.02, etc.
GPS output	• Differential: RTCM3.0, RTCM3.2 input and output

GPS output: NMEA0183, PIK plane coordinate, binary code
Network module: VRS, FKP, MAC, N-Trip

colorized point cloud

point cloud direct geo-referencing

